Itunes 32 11 0 5 5 0
Author: f | 2025-04-25
iTunes 11. out of 5 based on 0 ratings. iTunes 11. out of 5 based on 0 ratings.
Houdahspot 5 0 11 0 - erogonframe
139.2 159 83 78 24 47 4 107 10 0 4 614 87 5.02 1.475 10.2 1.5 3.0 6.9 2.28 2010 27 LAA AL 2.7 17 10 .630 3.92 33 33 0 4 1 0 222.2 221 104 97 27 73 2 169 12 1 11 954 102 4.28 1.320 8.9 1.1 3.0 6.8 2.32 2011 28 LAA AL 2.8 11 12 .478 3.38 33 33 0 4 1 0 228.2 207 95 86 26 72 4 178 8 1 10 949 111 4.00 1.220 8.1 1.0 2.8 7.0 2.47 2012 29 LAA AL -1.1 9 13 .409 5.16 30 30 0 1 1 0 178.0 165 109 102 39 61 2 133 9 0 4 764 74 5.63 1.270 8.3 2.0 3.1 6.7 2.18 2013 30 KCR AL 3.2 9 10 .474 3.24 32 32 0 0 0 0 211.0 190 85 76 26 51 3 161 6 0 6 859 127 3.93 1.142 8.1 1.1 2.2 6.9 3.16 2014 31 ATL NL 1.4 14 10 .583 3.95 31 31 0 0 0 0 196.0 193 90 86 16 63 4 179 4 0 9 817 90 3.39 1.306 8.9 0.7 2.9 8.2 2.84 2015 32 MIN AL 1.6 7 5 .583 4.00 17 17 0 0 0 0 108.0 104 50 48 12 36 2 82 4 0 3 457 102 4.17 1.296 8.7 1.0 3.0 6.8 2.28 2016 33 MIN AL 4.0 7 11 .389 3.38 30 30 0 2 1 0 181.1 168 78 68 19 53 2 149 4 3 11 748 125 3.81 1.219 8.3 0.9 2.6 7.4 2.81 2017 34 MIN AL 4.9 16 8 .667 3.28 33 33 0 5 3 0 211.1 177 85 77 31 61 2 167 8 1 12 864 135 4.46 1.126 7.5 1.3 2.6 7.1 2.74 AS,CYA-7 2018 35 MIN AL -0.6 0 1 .000 8.03 5 5 0 0 0 0 24.2 31 22 22 9 9 0 16 2 0 0 114 54 7.94 1.622 11.3 3.3 3.3 5.8 1.78 2019 36 CHW AL -0.4 0 2 .000 9.45 3 3 0 0 0 0 13.1 19 14 14 6 6 0 5 0 0 1 64 50 9.66 1.875 12.8 4.1 4.1 3.4 0.83 2021 38 KCR AL 0.5 2 2 .500 4.68 38 2 19 0 0 0 65.1 65 35 34 9 22 1 52 2 2 7 277 97 4.47 1.332 9.0 1.2 3.0 7.2 2.36 16 Yrs 27.1 151 129 .539 4.11 425 386 20 21 11 0 2486.2 2391 1221 1135 331 776 35 1978 104 11 104 10482 101 4.31 1.274 8.7 1.2 2.8 7.2 2.55 162 Game Avg 2.3 13 11 .539 4.11 36 32 2 Total - Yds. - TDs 5-66-0 6-123-0 Kickoff: Avg. / Return 13.2 20.5 INT: Total - Yds. - TDs 1-0-0 0-0-0 Fumble: Total - Yds. - TDs 0-0-0 0-0-0 Miscellaneous Misc. Yards 0 0 Poss. Time 24:32 35:28 3rd. Down Conv. 4 of 8 5 of 10 4th. Down Conversions 0 of 0 0 of 1 Red-Zone: Scores - Chances 2-3 3-4 Sacks: Total - Yds. 1-11 0-0 PAT: Total - Made 5-5 4-4 2PT Conversion: Total - Made 1-1 0-0 Field Goals: Total - Made 0-0 0-0 Individual Statistics Offensive Individual Passing Statistics WIL - Passing Player Cmp Att. Yds. TD INT Long Sack Powell,Xavier 11 18 283 4 0 61 0 Totals 11 18 283 4 0 61 0 KIN - Passing Player Cmp Att. Yds. TD Int. Long Sack Minor-Shaw,Russell 28 35 255 3 1 33 1 Totals 28 35 255 3 1 33 1 Individual Rushing Statistics KIN - Rushing Player Att. Gain Loss Net TD Lg. Avg. Minor-Shaw,Russell 12 92 11 81 1 15 6.8 Hailey,Jayon 10 74 0 74 0 36 7.4 Robinson,Brennan 10 43 2 41 0 10 4.1 Totals 32 209 13 196 1 36 6.1 Individual Receiving Statistics KIN - Receiving Player Rec. Yds. TD Long Hailey,Jayon 5 65 1 33 Brinson,Tony 4 62 0 28 Schreiner,EJ 5 49 1 14 DiGregorio,Mike 7 45 0 9 McCombs,Ryan 5 26 1 10 Robinson,Brennan 2 8 0 6 Totals 28 255 3 33 Defensive Wilkes King's (PA) Inidividual Defensive Statistics Categories: Wilkes - Individual Defensive Statistics Wilkes - Individual Defensive Statistics Player Solo Ast Tot TFL/Yds TFL Sack/Yds Sacks FF FR-Yds Fumbl INT INT BrUp Blkd QH Murray,Tallen 1 13 14 -/- - -/- - - 0-0 -/- - - - - 1 Barbieri,Rob 3 8 11 -/- - -/- - - 0-0 -/- - - - - - Addesso,Jesse 6 2 8 -/- - -/- - - 0-0 -/- - - - - - Marshall,Leroy 5 3 8 -/- - -/- - - 0-0 -/- - - - - - Redmond,Kellen - 7 7 0.5/1 0.5 -/- - - 0-0 -/- - - - - 1 Mackey-Woodson,Donell 4 3 7 -/- - -/- - - 0-0 -/- 1-0 1 - - - James,De'Von 2 4 6 0.5/1 0.5 -/- - - 0-0 -/- - - - - - Hess,Steele 1 4 5 1.0/11 1.0 1.0/11 1.0 - 0-0 -/- - - - - - Johnson,J'Vier 1 3 4 -/- - -/- - - 0-0 -/- - - - - - Creswell,Cohen 2 2 4 -/- - -/- - - 0-0 -/- - - - - - Ramos,Angel - 3 3 -/- - -/- - - 0-0 -/- - - - - 15,% 1(! )) .! 0 0! 0 - TypingClub
34 7 17 0 1 6 1 214 16.4 712 75 30 52 32 18:48 11 Chandler Stephenson C. Stephenson 58.1 1,162 2022-23 VGK 81 16 49 65 +12 26 6 9 1 2 5 0 120 13.3 675 74 56 64 30 19:01 12 Paul Stastny P. Stastny 57.6 486 2022-23 CAR 73 9 13 22 +4 16 2 2 0 0 3 0 80 11.3 280 21 18 20 8 11:52 13 Jean-Gabriel Pageau J. Pageau 57.2 1,256 2022-23 NYI 70 13 27 40 -2 14 5 3 3 1 2 0 123 10.6 719 175 61 33 35 17:37 14 Mark Kastelic M. Kastelic 56.9 590 2022-23 OTT 65 7 4 11 -6 102 0 0 0 0 2 0 73 9.6 336 154 37 19 15 8:54 15 Bo Horvat B. Horvat 56.9 1,685 2022-23 TOT 79 38 32 70 -1 18 12 10 4 1 5 1 229 16.6 958 57 55 38 37 20:39 16 Ross Colton R. Colton 56.1 189 2022-23 TBL 81 16 16 32 -8 50 4 5 0 0 3 0 153 10.5 106 188 28 38 20 12:21 17 Vincent Trocheck V. Trocheck 56.1 1,286 2022-23 NYR 82 22 42 64 +3 58 9 8 0 0 3 0 225 9.8 721 182 44 55 64 19:19 18 Radek Faksa R. Faksa 56.0 552 2022-23 DAL 81 11 9 20 +9 39 0 0 1 1 3 0 88 12.5 309 89 69 26 18 13:43 19 Anze Kopitar A. Kopitar 55.9 1,608 2022-23 LAK 82 28 46 74 +20 4 7 13 0 1 4 0 169 16.6 899 68 87 46 49 20:18 20 Nico Sturm N. Sturm 55.8 880 2022-23 SJS 74 14 12 26 -13 23 0 0 1 0 1 0 119 11.8 491. iTunes 11. out of 5 based on 0 ratings. iTunes 11. out of 5 based on 0 ratings.Macsome Itunes Converter 2 5 0 5 - bestcfiles
"size": 4, "shape": [ 48, 128 ], "total_size": 6144}*/// for convenience, these are extracted from metadata:data.dtype// "data.shape// (2) [48, 128]// data are loaded into a matching TypedArray in javascript if one exists, otherwise raw bytes are returned (there is no Float16Array, for instance). In this case the matching type is Int32Arraydata.value/*Int32Array(6144) [0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, …]*/// take a slice from 0:10 on axis 0, keeping all of axis 1:// (slicing is done through libhdf5 instead of in the javascript library - should be very efficient)data.slice([[0,10],[]])/*Int32Array(1280) [0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, …]*/// Convert to nested Array, with JSON-compatible elements:data.to_array()/*[ [ 0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, ... 28 more items ], [ 0, 0, 2, 2, Size XL (1 products) 1XL (7 products) 2XL (8 products) 3XL (8 products) 0 (12 products) 0/23 (1 products) 0/24 (1 products) 1/25 (5 products) 1/24 (3 products) 3/26 (5 products) 3/25 (3 products) 5/27 (5 products) 5/26 (3 products) 7/28 (5 products) 7/27 (3 products) 9/29 (5 products) 9/28 (3 products) 11/30 (5 products) 11/29 (3 products) 13/31 (5 products) 13/30 (3 products) 15/32 (5 products) 15/31 (3 products) 1 (21 products) 32/15 (16 products) 31/13 (16 products) 30/11 (16 products) 3 (21 products) 29/9 (16 products) 28/7 (16 products) 5 (21 products) 27/5 (16 products) 7 (21 products) 26/3 (16 products) 9 (21 products) 11 (21 products) 13 (21 products) 14 (1 products) 15 (21 products) 16 (1 products) 18 (1 products) 20 (1 products) 25/1 (16 products) 14W (26 products) 16W (28 products) 18W (28 products) 20W (28 products) 22W (24 products) 24W (19 products) 24/0 (8 products) 24/ZERO (6 products) ZERO (7 products) zero (3 products) ZERO/24 (6 products) Availability In stock (36 products) Out of stock (43 products)Houdahspot 5 0 11 - bitesfree.mystrikingly.com
Correct answer and right logic.Now observe the time between 11 to 12, either it can either be A.M or P.M, the hands are not coinciding between 11’o o’clock and 12’o o’clock. The coinciding of hands at 12’ o clock is the coincidence between 12 and 1 and 11 and 12. Hence, in 12 hours, there will only be 11 coincidence, extending the logic for 24 hours of the day, there will be 22 coincidences.If 12:0:0 A.M is the first coincidence of the hands in a day then the next collision will be at 1’o o’clock 5 minutes, but the evaluation of seconds is difficult, but not impossible.Logical calculation:We know in 12 hours there will be 11 coincidences. Therefore, one collision will happen at:Frequency of one collision = (12 hours)/11Frequency of one collision = (12*60 mins)/11Frequency of one collision = (720 mins)/11Frequency of one collision = 65(5/11)The value 65(5/11) indicates that the hands of a clock coincide after every 65 minutes 5/11 of a minute. i.e. if 12:0:0 is the first collision, then the exact time of the next collision will be obtained by adding 65(5/11) to 12 o’clock.The below table denotes the time at which both the hands of a clock collide:Frequency of collisionTime in mixed fractionExact time1st12:0:012:0:02nd1:5:5/111:5:273rd2:10:10/112:10:544th3:16:16/113:16:215th4:21:9/114:21:166th5:27:3/115:27:367th6:32:8/116:32:438th7:38:2/117:38:109th8:43:7/118:43:3810th9:49:1/119:49:511th10:54:6/1110:54:3212th11:59:11/1112:0:0Q.2 How many times in a day do the minute and hour hands of clock form a 180° straight line in a day?The hands of the clock make one 180° straight line every hour except between 5’o clock and 6’o clock. A precise0-5 Kg / 0-11lbs
Conference Finals DATE TM OPP SCORE MIN PTS REB AST STL BLK FGM FGA FG% 3PM 3PA 3P% FTM FTA FT% TS% OREB DREB TOV PF +/- Mon 5/30 OKC @ GSW L 88-96 45 19 7 13 2 0 7 21 33.3 2 6 33.3 3 4 75.0 41.7 0 7 3 3 -14 Sat 5/28 OKC vs GSW L 101-108 44 28 9 11 4 0 10 27 37.0 0 5 0.0 8 10 80.0 44.6 3 6 5 2 -11 Thu 5/26 OKC @ GSW L 111-120 41 31 7 8 5 0 11 28 39.3 3 8 37.5 6 9 66.7 48.5 2 5 7 5 -9 Tue 5/24 OKC vs GSW W 118-94 41 36 11 11 4 0 12 27 44.4 4 8 50.0 8 8 100.0 59.0 5 6 6 1 +26 Sun 5/22 OKC vs GSW W 133-105 32 30 8 12 2 0 10 19 52.6 1 5 20.0 9 11 81.8 62.9 2 6 4 3 +41 Wed 5/18 OKC @ GSW L 91-118 31 16 1 12 2 0 5 14 35.7 1 5 20.0 5 5 100.0 49.4 1 0 3 1 -27 Mon 5/16 OKC @ GSW W 108-102 40 27 6 12 7 0 7 21 33.3 2 4 50.0 11 14 78.6 49.7 1 5 3 2 +8 Average 39.1 26.7 7.0 11.3 3.7 0.0 8.9 22.4 39.5 1.9 5.9 31.7 7.1 8.7 82.0 50.9 2.0 5.0 4.4 2.4 2.0 Conference Semifinals DATE TM OPP. iTunes 11. out of 5 based on 0 ratings.QQ Bangs: 5, -5, 0, 5, 5, -5 / 5, -5, 0, 5, -5, 5 - Dragon Ball
Rbdp, Rbof, Rbcatch numbers into a total defensive contribution.Provided by Baseball Info Solutions">Rdrs BIS Defensive Runs Saved Above Avg per 1,200 InnThe number of runs above or below average the fielder was worth per 1,200 Innings (approx 135 games).This number combines the Rpm, Rbdp, Rbof, Rbcatch numbers into a total defensive contribution.For pitchers, this is set to 200 Innings.Provided by Baseball Info Solutions">Rdrs/yr Range Factor per 9 Inn9 * (Putouts + Assists) / Innings Played" data-filter="1" data-name="">RF/9 League Range Factor per 9 InnAverage Range Factor the league9 * (Putouts + Assists) / Innings Played" data-filter="1" data-name="">lgRF9 Range Factor per Game(Putouts + Assists) / Games Played" data-filter="1" data-name="">RF/G League Range Factor per GameAverage Range Factor for the league for chances per game(Putouts + Assists) / Games Played" data-filter="1" data-name="">lgRFG SB CS Caught Stealing PercentageCS / (SB + CS)" data-filter="1" data-name="">CS% League Caught Stealing PercentageLeague Expected CS / Players SB + Players CS" data-filter="1" data-name="">lgCS% PickoffsRunner picked off a base. May include cases they were safe on an error. Also includes Pickoff Caught Stealing plays.">Pick Awards 2005 22 LAA AL P 23 23 1 133.2 20 10 10 0 2 1.000 .954 0 0 1.35 1.70 0.87 1.68 8 5 38.5 29.9 1 2006 23 LAA AL P 33 33 0 204.0 27 13 12 2 3 .926 .958 0 0 1.10 1.56 0.76 1.54 5 9 64.3 29.8 2 2007 24 LAA AL P 28 26 0 150.0 19 6 13 0 2 1.000 .955 -1 -1 1.14 1.60 0.68 1.59 11 3 21.4 26.6 0 2008 25 LAA AL P 32 32 2 219.0 32 19 13 0 0 1.000 .952 -4 -4 1.32 1.60 1.00 1.59 16 4 20.0 27.2 0 AS,CYA-6 2009 26 LAA AL P 24 23 2 139.2 16 6 9 1 1 .938 .953 -3 -4 0.97 1.53 0.63 1.51 15 5 25.0 26.4 0 2010 27 LAA AL P 33 33 4 222.2 32 15 17 0 2 1.000 .953 -6 -5 1.29 1.63 0.97 1.61 36 8 18.2 26.2 1 2011 28 LAA AL P 33 33 4 228.2 36 11 20 5 3 .861 .949 -6 -5 1.22 1.60 0.94 1.59 28 5 15.2 28.0 0 2012 29 LAA AL P 30 30 1 178.0 34 17 16 1 1 .971 .954 -2 -2 1.67 1.57 1.10 1.56 16 2 11.1 25.4 1 2013 30 KCR AL P 32 32 0 211.0 42 22 19 1 2 .976 .957 -1 -1 1.75 1.54 1.28 1.53 13 8 38.1 26.0 0 2014 31 ATL NL P 31 31 0 196.0 38 17 20 1 1 .974 .955 2 2 1.70 1.72 1.19 1.71 7 6 46.2 27.9 1 2015 32 MIN AL PComments
139.2 159 83 78 24 47 4 107 10 0 4 614 87 5.02 1.475 10.2 1.5 3.0 6.9 2.28 2010 27 LAA AL 2.7 17 10 .630 3.92 33 33 0 4 1 0 222.2 221 104 97 27 73 2 169 12 1 11 954 102 4.28 1.320 8.9 1.1 3.0 6.8 2.32 2011 28 LAA AL 2.8 11 12 .478 3.38 33 33 0 4 1 0 228.2 207 95 86 26 72 4 178 8 1 10 949 111 4.00 1.220 8.1 1.0 2.8 7.0 2.47 2012 29 LAA AL -1.1 9 13 .409 5.16 30 30 0 1 1 0 178.0 165 109 102 39 61 2 133 9 0 4 764 74 5.63 1.270 8.3 2.0 3.1 6.7 2.18 2013 30 KCR AL 3.2 9 10 .474 3.24 32 32 0 0 0 0 211.0 190 85 76 26 51 3 161 6 0 6 859 127 3.93 1.142 8.1 1.1 2.2 6.9 3.16 2014 31 ATL NL 1.4 14 10 .583 3.95 31 31 0 0 0 0 196.0 193 90 86 16 63 4 179 4 0 9 817 90 3.39 1.306 8.9 0.7 2.9 8.2 2.84 2015 32 MIN AL 1.6 7 5 .583 4.00 17 17 0 0 0 0 108.0 104 50 48 12 36 2 82 4 0 3 457 102 4.17 1.296 8.7 1.0 3.0 6.8 2.28 2016 33 MIN AL 4.0 7 11 .389 3.38 30 30 0 2 1 0 181.1 168 78 68 19 53 2 149 4 3 11 748 125 3.81 1.219 8.3 0.9 2.6 7.4 2.81 2017 34 MIN AL 4.9 16 8 .667 3.28 33 33 0 5 3 0 211.1 177 85 77 31 61 2 167 8 1 12 864 135 4.46 1.126 7.5 1.3 2.6 7.1 2.74 AS,CYA-7 2018 35 MIN AL -0.6 0 1 .000 8.03 5 5 0 0 0 0 24.2 31 22 22 9 9 0 16 2 0 0 114 54 7.94 1.622 11.3 3.3 3.3 5.8 1.78 2019 36 CHW AL -0.4 0 2 .000 9.45 3 3 0 0 0 0 13.1 19 14 14 6 6 0 5 0 0 1 64 50 9.66 1.875 12.8 4.1 4.1 3.4 0.83 2021 38 KCR AL 0.5 2 2 .500 4.68 38 2 19 0 0 0 65.1 65 35 34 9 22 1 52 2 2 7 277 97 4.47 1.332 9.0 1.2 3.0 7.2 2.36 16 Yrs 27.1 151 129 .539 4.11 425 386 20 21 11 0 2486.2 2391 1221 1135 331 776 35 1978 104 11 104 10482 101 4.31 1.274 8.7 1.2 2.8 7.2 2.55 162 Game Avg 2.3 13 11 .539 4.11 36 32 2
2025-03-29Total - Yds. - TDs 5-66-0 6-123-0 Kickoff: Avg. / Return 13.2 20.5 INT: Total - Yds. - TDs 1-0-0 0-0-0 Fumble: Total - Yds. - TDs 0-0-0 0-0-0 Miscellaneous Misc. Yards 0 0 Poss. Time 24:32 35:28 3rd. Down Conv. 4 of 8 5 of 10 4th. Down Conversions 0 of 0 0 of 1 Red-Zone: Scores - Chances 2-3 3-4 Sacks: Total - Yds. 1-11 0-0 PAT: Total - Made 5-5 4-4 2PT Conversion: Total - Made 1-1 0-0 Field Goals: Total - Made 0-0 0-0 Individual Statistics Offensive Individual Passing Statistics WIL - Passing Player Cmp Att. Yds. TD INT Long Sack Powell,Xavier 11 18 283 4 0 61 0 Totals 11 18 283 4 0 61 0 KIN - Passing Player Cmp Att. Yds. TD Int. Long Sack Minor-Shaw,Russell 28 35 255 3 1 33 1 Totals 28 35 255 3 1 33 1 Individual Rushing Statistics KIN - Rushing Player Att. Gain Loss Net TD Lg. Avg. Minor-Shaw,Russell 12 92 11 81 1 15 6.8 Hailey,Jayon 10 74 0 74 0 36 7.4 Robinson,Brennan 10 43 2 41 0 10 4.1 Totals 32 209 13 196 1 36 6.1 Individual Receiving Statistics KIN - Receiving Player Rec. Yds. TD Long Hailey,Jayon 5 65 1 33 Brinson,Tony 4 62 0 28 Schreiner,EJ 5 49 1 14 DiGregorio,Mike 7 45 0 9 McCombs,Ryan 5 26 1 10 Robinson,Brennan 2 8 0 6 Totals 28 255 3 33 Defensive Wilkes King's (PA) Inidividual Defensive Statistics Categories: Wilkes - Individual Defensive Statistics Wilkes - Individual Defensive Statistics Player Solo Ast Tot TFL/Yds TFL Sack/Yds Sacks FF FR-Yds Fumbl INT INT BrUp Blkd QH Murray,Tallen 1 13 14 -/- - -/- - - 0-0 -/- - - - - 1 Barbieri,Rob 3 8 11 -/- - -/- - - 0-0 -/- - - - - - Addesso,Jesse 6 2 8 -/- - -/- - - 0-0 -/- - - - - - Marshall,Leroy 5 3 8 -/- - -/- - - 0-0 -/- - - - - - Redmond,Kellen - 7 7 0.5/1 0.5 -/- - - 0-0 -/- - - - - 1 Mackey-Woodson,Donell 4 3 7 -/- - -/- - - 0-0 -/- 1-0 1 - - - James,De'Von 2 4 6 0.5/1 0.5 -/- - - 0-0 -/- - - - - - Hess,Steele 1 4 5 1.0/11 1.0 1.0/11 1.0 - 0-0 -/- - - - - - Johnson,J'Vier 1 3 4 -/- - -/- - - 0-0 -/- - - - - - Creswell,Cohen 2 2 4 -/- - -/- - - 0-0 -/- - - - - - Ramos,Angel - 3 3 -/- - -/- - - 0-0 -/- - - - - 1
2025-03-2634 7 17 0 1 6 1 214 16.4 712 75 30 52 32 18:48 11 Chandler Stephenson C. Stephenson 58.1 1,162 2022-23 VGK 81 16 49 65 +12 26 6 9 1 2 5 0 120 13.3 675 74 56 64 30 19:01 12 Paul Stastny P. Stastny 57.6 486 2022-23 CAR 73 9 13 22 +4 16 2 2 0 0 3 0 80 11.3 280 21 18 20 8 11:52 13 Jean-Gabriel Pageau J. Pageau 57.2 1,256 2022-23 NYI 70 13 27 40 -2 14 5 3 3 1 2 0 123 10.6 719 175 61 33 35 17:37 14 Mark Kastelic M. Kastelic 56.9 590 2022-23 OTT 65 7 4 11 -6 102 0 0 0 0 2 0 73 9.6 336 154 37 19 15 8:54 15 Bo Horvat B. Horvat 56.9 1,685 2022-23 TOT 79 38 32 70 -1 18 12 10 4 1 5 1 229 16.6 958 57 55 38 37 20:39 16 Ross Colton R. Colton 56.1 189 2022-23 TBL 81 16 16 32 -8 50 4 5 0 0 3 0 153 10.5 106 188 28 38 20 12:21 17 Vincent Trocheck V. Trocheck 56.1 1,286 2022-23 NYR 82 22 42 64 +3 58 9 8 0 0 3 0 225 9.8 721 182 44 55 64 19:19 18 Radek Faksa R. Faksa 56.0 552 2022-23 DAL 81 11 9 20 +9 39 0 0 1 1 3 0 88 12.5 309 89 69 26 18 13:43 19 Anze Kopitar A. Kopitar 55.9 1,608 2022-23 LAK 82 28 46 74 +20 4 7 13 0 1 4 0 169 16.6 899 68 87 46 49 20:18 20 Nico Sturm N. Sturm 55.8 880 2022-23 SJS 74 14 12 26 -13 23 0 0 1 0 1 0 119 11.8 491
2025-04-11"size": 4, "shape": [ 48, 128 ], "total_size": 6144}*/// for convenience, these are extracted from metadata:data.dtype// "data.shape// (2) [48, 128]// data are loaded into a matching TypedArray in javascript if one exists, otherwise raw bytes are returned (there is no Float16Array, for instance). In this case the matching type is Int32Arraydata.value/*Int32Array(6144) [0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, …]*/// take a slice from 0:10 on axis 0, keeping all of axis 1:// (slicing is done through libhdf5 instead of in the javascript library - should be very efficient)data.slice([[0,10],[]])/*Int32Array(1280) [0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, …]*/// Convert to nested Array, with JSON-compatible elements:data.to_array()/*[ [ 0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, ... 28 more items ], [ 0, 0, 2, 2,
2025-04-17Size XL (1 products) 1XL (7 products) 2XL (8 products) 3XL (8 products) 0 (12 products) 0/23 (1 products) 0/24 (1 products) 1/25 (5 products) 1/24 (3 products) 3/26 (5 products) 3/25 (3 products) 5/27 (5 products) 5/26 (3 products) 7/28 (5 products) 7/27 (3 products) 9/29 (5 products) 9/28 (3 products) 11/30 (5 products) 11/29 (3 products) 13/31 (5 products) 13/30 (3 products) 15/32 (5 products) 15/31 (3 products) 1 (21 products) 32/15 (16 products) 31/13 (16 products) 30/11 (16 products) 3 (21 products) 29/9 (16 products) 28/7 (16 products) 5 (21 products) 27/5 (16 products) 7 (21 products) 26/3 (16 products) 9 (21 products) 11 (21 products) 13 (21 products) 14 (1 products) 15 (21 products) 16 (1 products) 18 (1 products) 20 (1 products) 25/1 (16 products) 14W (26 products) 16W (28 products) 18W (28 products) 20W (28 products) 22W (24 products) 24W (19 products) 24/0 (8 products) 24/ZERO (6 products) ZERO (7 products) zero (3 products) ZERO/24 (6 products) Availability In stock (36 products) Out of stock (43 products)
2025-04-04Correct answer and right logic.Now observe the time between 11 to 12, either it can either be A.M or P.M, the hands are not coinciding between 11’o o’clock and 12’o o’clock. The coinciding of hands at 12’ o clock is the coincidence between 12 and 1 and 11 and 12. Hence, in 12 hours, there will only be 11 coincidence, extending the logic for 24 hours of the day, there will be 22 coincidences.If 12:0:0 A.M is the first coincidence of the hands in a day then the next collision will be at 1’o o’clock 5 minutes, but the evaluation of seconds is difficult, but not impossible.Logical calculation:We know in 12 hours there will be 11 coincidences. Therefore, one collision will happen at:Frequency of one collision = (12 hours)/11Frequency of one collision = (12*60 mins)/11Frequency of one collision = (720 mins)/11Frequency of one collision = 65(5/11)The value 65(5/11) indicates that the hands of a clock coincide after every 65 minutes 5/11 of a minute. i.e. if 12:0:0 is the first collision, then the exact time of the next collision will be obtained by adding 65(5/11) to 12 o’clock.The below table denotes the time at which both the hands of a clock collide:Frequency of collisionTime in mixed fractionExact time1st12:0:012:0:02nd1:5:5/111:5:273rd2:10:10/112:10:544th3:16:16/113:16:215th4:21:9/114:21:166th5:27:3/115:27:367th6:32:8/116:32:438th7:38:2/117:38:109th8:43:7/118:43:3810th9:49:1/119:49:511th10:54:6/1110:54:3212th11:59:11/1112:0:0Q.2 How many times in a day do the minute and hour hands of clock form a 180° straight line in a day?The hands of the clock make one 180° straight line every hour except between 5’o clock and 6’o clock. A precise
2025-04-03